60°
3sinθcosθ +cosθsinθ =5sinθ
sinθ (3sin2θ+cos2θ)=5(sinθ cosθ) 3(1−cos2θ)+cos2θ=5cosθ 2cos2θ+5cosθ−3=0 2cosθ[cosθ+3]−1(cosθ+3)=0 (cosθ+3)(2cosθ−1)=0
cosθ=−3 (Not possible as cosθ ≤ 1) cosθ=12 ⇒θ=60∘
3tanθ + cotθ = 5 cosec θ, 0≤θ ≤ 90∘. Then the value of θ is __∘.
3tanθ + cotθ = 5 cosec θ. Find the value of θ, 0 < θ ≤ 90.
3tan θ + cot θ = 5 cosec θ. Solve for θ,0 <θ≤ 90.