The integral is given as,
I= ∫ ( 3x−1 )dx ( x+2 ) 2
Use partial fraction rule to simplify the fraction.
3x−1 ( x+2 ) 2 = A ( x+2 ) + B ( x+2 ) 2 3x−1=A( x+2 )+B
Substitute x=−2then,
B=−7
Substitute x=0and B=−7 then,
A=3
Substitute the above values and integral can be written as,
I= ∫ ( 3x−1 )dx ( x+2 ) 2 =3 ∫ dx x+2 −7 ∫ dx ( x+2 ) 2
On integrating, we get
I=3log| x+2 |−7[ ( x+2 ) −1 −1 ]+C =3log| x+2 |+ 7 ( x+2 ) +C