Given equations are
3x+4y+5z=18,2x−y+8z=13,5x−2y+7z=20D=∣∣
∣∣3452−185−27∣∣
∣∣=3(−7+16)−4(14−40)+5(−4+5)
=3(9)−4(−26)+5(1)=27+104+5=136
D1=∣∣
∣∣184513−1820−27∣∣
∣∣=18(−7+16)−4(91−160)+5(−26+20)
=18(9)−4(−69)+5(−6)=162+276−30=408
D2=∣∣
∣∣318521385207∣∣
∣∣=3(91−160)−18(14−40)+5(40−65)
=3(−69)−18(−26)+5(−25)=−207+468−125=136
D3=∣∣
∣∣34182−1135−220∣∣
∣∣=3(−20+26)−4(40−65)+18(−4+5)
=3(6)−4(−25)+18(1)=18+100+18=136
Now, x=D1D=408136=3
y=D2D=136136=1
z=D3D=136136=1
Hence, the solution for the system is (3,1,1).