4(1–sin2θ)(1+tan2θ)=
4
1
2
0
We know that 1−sin2θ=cos2θ and 1+tan2θ=sec2θ ∴4(1–sin2θ)(1+tan2θ)=4cos2θ×sec2θ ∵cosθ=1secθ ∴4cos2θ×sec2θ=4
Simplify : 4(1 – sin2θ) (1 + tan2θ)