Find the sum to ′n′ terms of the series
52+62+72+.........+202
The given series is 52+62+72+.........+202
We can write the given series as (12+22+32+42+52+62+72+.........+202)−(12+22+32+42)
We know that square of the ′n′ natural number is given by i.e,(12+22+32.....+n2)
=n(n+1)(2n+1)6………(i)
On putting n=20 in the above eq.(i), we get
(12+22+32+42+52+62+72+.........+202)=20(20+1)(2×20+1)6
=20(21)(40+1)6
=20(21)(41)6=20(7)(41)2=10(7)(41)1=2870
Now, on putting n=4 in the eq.(i), we get
∴(12+22+32+42)=4(4+1)(2×4+1)6
=4(5)(8+1)6=4(5)(9)6=4(5)(3)2=30
So, 52+62+72+.........+202=2870−30=2840 [Using above values]
Thus, the sum of ′n′ terms of series 52+62+72+.......+202 is 2840.