The given function is 1 9−25 x 2 .
Consider, ∫ 1 9−25 x 2 dx(1)
Also, ∫ 1 a 2 − x 2 = 1 a sin −1 x a +c (2)
Now let, 5 x =t 5dx=dt
Substitute values of t and dt in (1),
∫ 1 9− 25 2 dx= 1 5 ∫ ( 1 9− t 2 ) dt = 1 5 ∫ ( 1 3 2 − t 2 ) dt = 1 5 sin −1 ( t 3 )+c = 1 5 sin −1 ( 5x 3 )+c By Using (2)
Thus, the integral of the function 1 9−25 x 2 is 1 5 sin −1 ( 5x 3 )+c.