The correct option is B −6≤x≤0
First, isolate the absolute value on the left hand side.
4|6+2x|−27+27≤−3+27
4|6+2x|4≤244
|6+2x|≤6
Now rewrite this as 2 inequalities without the absolute value
1): 6+2x≤66+2x−6≤6−62x≤0x≤0x≤0∣∣
∣
∣
∣
∣
∣
∣
∣∣2): (6+2x)≤6−6−2x≤6add 6 on both side−2x≤12divide by −2−2x−2≥12−2x≥−6
The following best describes the solution to the inequality
x≥−6 and x≤0
−6≤x≤0