wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

4 + 6 + 9 + 13 + 18 +....

Open in App
Solution

We have, 4 + 6 + 9 + 13 + 18 +.... The sequence of the differences between the successive terms of this series is 2, 3, 4, 5+... clearly, it is an A.P. with common difference 1. Let Tn be the nth term and Sn denote the sum of n terms of the given series. Then, Sn=4+6+13+18...Tn1+Tn...(i) Also, Sn=4+6+13+18...Tn1+Tn...(i) Subtracting (ii) from (i),we get 0=4+[2+3+4+5...(TnTn1)]TnTn=4+[2+3+4+5...(TnTn1)]Tn=4+(n1)2[2×2+(n11)×1]=4+(n1)2[4+n2]=4+(n1)2(n+2)=8+n2+2nn22=n2+n+62Sn=nk1Tk=nk1(k2+k+62)=12nk1k2+12nk1k+nk13Sn=12[n(n+1)(2n+1)6]+n(n+1)2×2+3nSn=112(n)(n+1)(2n+1)+n(n+1)4+3n=n(n+1)(2n+1)+3(n+1)+36n12=n[(n+1)(2n+1)+3(n+1)+3612]=n12[2n2+n+2n+1+3n+3+36]=n12[2n2+6n+40]=2n12[n2+3n+20]=n6[n2+3n+20]Hence,Sn=n6[n2+3n+20]


flag
Suggest Corrections
thumbs-up
5
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Summation by Sigma Method
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon