wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

4cosθ3secθ=2tanθ.

Open in App
Solution

General soln: 4cosθ3secθ=2tanθ
We are given
4cosθ3secθ=2tanθ
4cosθ3cosθ=2sinθcosθ
4(1sin2θ)3=2sinθ
4sin2θ+2θ1=0.....(1)
Now, let compare equation (1) with
ax2+bx+c=0
we get a=4 & b=1 & c=1
now, Discriminant D=b24ac
=(2)24(4)(1)
=4+16
D=20>0
x=sinθ=b±D2a
sinθ=2±202(4)=2±208
now,
sinθ=2+208 or sinθ=2208
sinθ=2+258 or sinθ=2258
sinθ=1+54 or sinθ=158
here sinα1=1+54,sinα2=154;[π2α1,α2π2]
now, α1=π10 & α2=3π10
θ=nπ+(1)nπ10nz or θ=nπ+(1)π(3π10),nz

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Principal Solution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon