General soln: 4cosθ−3secθ=2tanθ
We are given
4cosθ−3secθ=2tanθ
4cosθ−3cosθ=2sinθcosθ
4(−1sin2θ)−3=2sinθ
∴4sin2θ+2θ−1=0.....(1)
Now, let compare equation (1) with
ax2+bx+c=0
we get a=4 & b=1 & c=−1
now, Discriminant D=b2−4ac
=(2)2−4(4)(−1)
=4+16
D=20>0
x=sinθ=−b±√D2a
sinθ=−2±√202(4)=−2±√208
now,
sinθ=−2+√208 or sinθ=−2−√208
sinθ=−2+2√58 or sinθ=−2−2√58
sinθ=−1+√54 or sinθ=−1−√58
here sinα1=−1+√54,sinα2=−1−√54;[−π2≤α1,α2≤π2]
now, α1=π10 & α2=−3π10
∴θ=nπ+(−1)nπ10n∈z or θ=nπ+(−1)π(−3π10),n∈z