The given function is sin 3 ( 2x+1 )
∫ sin 3 ( 2x+1 )dx (1)
Also, sin3y=3siny−4 sin 3 y sin 3 y= 1 4 ( 3siny−sin3y ) (2)
Compare (1) and (2), we get,
y=2x+1
Substitute value of y in (2).
sin 2 ( 2x+1 )= 3 4 sin(2x+1)− 1 4 sin(2x+1)
Substitute value of sin 3 ( 2x+1 ) in (1) to determine the integration of the function.
∫ sin 3 ( 2x+1 )dx = 3 4 ∫ sin(2x+1) dx− 1 4 ∫ sin(6x+3) =− 3 8 cos(2x+1)+ 1 24 cos(6x+3)
Thus, the integral of the function sin 3 ( 2x+1 ) is − 3 8 cos(2x+1)+ 1 24 cos(6x+3).