wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

4. sin3 (2x +1)

Open in App
Solution

The given function is sin 3 ( 2x+1 )

sin 3 ( 2x+1 )dx (1)

Also, sin3y=3siny4 sin 3 y sin 3 y= 1 4 ( 3sinysin3y ) (2)

Compare (1) and (2), we get,

y=2x+1

Substitute value of y in (2).

sin 2 ( 2x+1 )= 3 4 sin(2x+1) 1 4 sin(2x+1)

Substitute value of sin 3 ( 2x+1 ) in (1) to determine the integration of the function.

sin 3 ( 2x+1 )dx = 3 4 sin(2x+1) dx 1 4 sin(6x+3) = 3 8 cos(2x+1)+ 1 24 cos(6x+3)

Thus, the integral of the function sin 3 ( 2x+1 ) is 3 8 cos(2x+1)+ 1 24 cos(6x+3).


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Formulae 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon