The given equation is,
xy+ y 2 =tanx+y
Differentiate on both sides of the equation.
d( xy+ y 2 )=d( tanx+y ) d( xy )+d( y 2 )=d( tanx )+dy xdy+ydx+2ydy= sec 2 xdx+dy xdy+2ydy−dy= sec 2 xdx−ydx
Further solve the equation.
( x+2y−1 )dy=( sec 2 x−y )dx dy dx = sec 2 x−y x+2y−1
Thus, the derivative of xy+ y 2 =tanx+yis dy dx = sec 2 x−y x+2y−1 .