wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

+42x2x4 2x 210. )2x x+42x -(5x+4) (4-x)2x 2x x+y+k y+ k

Open in App
Solution

(i)

The given left hand side determinant is,

Δ=| x+4 2x 2x 2x x+4 2x 2x 2x x+4 |

Apply row operation R 1 R 1 + R 2 + R 3 ,

Δ=| x+4+2x+2x 2x+x+4+2x 2x+2x+x+4 2x x+4 2x 2x 2x x+4 | =| 5x+4 5x+4 5x+4 2x x+4 2x 2x 2x x+4 | =( 5x+4 )| 1 1 1 2x x+4 2x 2x 2x x+4 |

Apply column operation C 1 C 1 C 2 ,

Δ=( 5x+4 )| 11 1 1 2xx4 x+4 2x 2x2x 2x x+4 | =( 5x+4 )| 0 1 1 x4 x+4 2x 0 2x x+4 | =( 5x+4 )( x4 )| 0 1 1 1 x+4 2x 0 2x x+4 |

Apply column operation C 2 C 2 C 3 ,

Δ=( 5x+4 )( x4 )| 0 11 1 1 x+42x 2x 0 2xx4 x+4 | =( 5x+4 )( x4 )| 0 0 1 1 ( x4 ) 2x 0 x4 x+4 | =( 5x+4 )( x4 )( x4 )| 0 0 1 1 1 2x 0 1 x+4 |

Expand along R 1 ,

Δ=( 5x+4 ) ( x4 ) 2 [ 00+1 ] =( 5x+4 ) ( x4 ) 2

Thus, the left hand side of the determinant is equal to the right hand side.

(ii)

The given left hand side determinant is,

Δ=| y+k y y y y+k y y y y+k |

Apply row operation R 1 R 1 + R 2 + R 3 ,

Δ=| y+k+y+y y+y+k+y y+y+y+k y y+k y y y y+k | =| 3y+k 3y+k 3y+k y y+k y y y y+k | =( 3y+k )| 1 1 1 y y+k y y y y+k |

Apply column operation C 1 C 1 C 2 ,

Δ=( 3y+k )| 11 1 1 yyk y+k y yy y y+k | =( 3y+k )| 0 1 1 k y+k y 0 y y+k | =k( 3y+k )| 0 1 1 1 y+k y 0 y y+k |

Apply column operation C 2 C 2 C 3 ,

Δ=k( 3y+k )| 0 11 1 1 y+ky y 0 yyk y+k | =k( 3y+k )| 0 0 1 1 k y 0 k y+k | = k 2 ( 3y+k )| 0 0 1 1 1 y 0 1 y+k |

Expand along R 1 ,

Δ= k 2 ( 3y+k )[ 00+1 ] = k 2 ( 3y+k )

Thus, the value of the left hand side determinant is equal to the right hand side value.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon