4329 = ___
(9×100)+(2×101)+(3×102)+(4×103)
(4×10−3)+(3×101)+(2×102)+(9×103)
(4×10−3)+(3×10−2)+(2×10−1)+(9×100)
(9×10−3)+(2×10−2)+(3×10−1)+(4×103)
We know that a0=1 for any non-zero integer a. 4329=4000+300+20+9 =(4×103)+(3×102)+(2×101)+(9×100)
Write the numeral whose expanded form is given below:(i) 6×104+3×103+0×102+7×101+8×100(ii) 9×106+7×105+0×104+3×103+4×102+6×101+2×100(iii) 8×105+6×104+4×103+2×102+9×101+6×100
Find the number from each of the following expanded forms:
(a) 8 × 104 + 6 × 103 + 0 × 102 + 4 × 101 + 5 × 100
(b) 4 × 105 + 5 × 103 + 3 × 102 + 2 × 100
(c) 3 × 104 + 7 × 102 + 5 × 100
(d) 9 × 105 + 2 × 102 + 3 × 101