The correct option is
B l(2l2−3l+4)We divide the given polynomial 4l5−6l4+8l3 by the monomial 2l2 as shown below:
4l5−6l4+8l32l2=4l52l2−6l42l2+8l32l2=(2×2×l52l2)−(2×3×l42l2)+(2×2×2×l32l2)=(2×l5×l−21)−(3×l4×l−21)+(2×2×l3×l−21)
=(2×l(5−2))−(3×l(4−2))+(4×l(3−2))(∵ax+ay=ax+y)=2l3−3l2+4l=l(2l2−3l+4)
Hence, 4l5−6l4+8l32l2=l(2l2−3l+4).