wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

5· y=ex (a cos x + b sin x)

Open in App
Solution

The given function is,

y= e x ( acosx+bsinx ) (1)

Differentiate both side with respect to x,

d( y ) dx = d dx e x ( acosx+bsinx )

Use product rule and differentiate,

y =( acosx+bsinx ) d dx e x + e x d dx ( acosx+bsinx ) y = e x ( acosx+bsinx )+ e x ( a d dx cosx+b d dx sinx ) y = e x ( acosx+bsinx )+ e x ( asinx+bcosx ) y = e x [ ( a+b )cosx( ab )sinx ] (2)

Again differentiate,

d dx y = d dx e x [ ( a+b )cosx( ab )sinx ]

Again use product rule,

y = e x [ ( a+b )cosx( ab )sinx ]+ e x [ ( a+bsinx( ab )cosx ) ] = e x [ 2bcosx2asinx ] =2 e x [ bcosxasinx ] y 2 = e x ( bcosxasinx ) (3)

Add equation (1) and (3),

y+ y 2 = e x ( acosx+bsinx )+ e x ( bcosxasinx ) = e x [ acosx+bsinx+bcosxasinx ] = e x [ cosx( a+b )sinx( ab ) ]

From equation we can write it as:

y+ y 2 = y 2y+ y =2 y y 2 y +2y=0

Thus, the required differential equation of the curve is y 2 y +2y=0.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Formation of Differential Equation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon