The given function is,
y= e x ( acosx+bsinx ) (1)
Differentiate both side with respect to x,
d( y ) dx = d dx e x ( acosx+bsinx )
Use product rule and differentiate,
y ′ =( acosx+bsinx ) d dx e x + e x d dx ( acosx+bsinx ) y ′ = e x ( acosx+bsinx )+ e x ( a d dx cosx+b d dx sinx ) y ′ = e x ( acosx+bsinx )+ e x ( −asinx+bcosx ) y ′ = e x [ ( a+b )cosx−( a−b )sinx ] (2)
Again differentiate,
d dx y ′ = d dx e x [ ( a+b )cosx−( a−b )sinx ]
Again use product rule,
y ″ = e x [ ( a+b )cosx−( a−b )sinx ]+ e x [ −( a+bsinx−( a−b )cosx ) ] = e x [ 2bcosx−2asinx ] =2 e x [ bcosx−asinx ] y ″ 2 = e x ( bcosx−asinx ) (3)
Add equation (1) and (3),
y+ y ″ 2 = e x ( acosx+bsinx )+ e x ( bcosx−asinx ) = e x [ acosx+bsinx+bcosx−asinx ] = e x [ cosx( a+b )−sinx( a−b ) ]
From equation we can write it as:
y+ y ″ 2 = y ′ 2y+ y ″ =2 y ′ y ″ −2 y ′ +2y=0
Thus, the required differential equation of the curve is y ″ −2 y ′ +2y=0.