Given, A={ 3,5,7,9,11 } , B={ 7,9,11,13 } , C={ 11,13,15 } and D={ 15,17 }
(i)
The intersection between sets A and B is denoted as A∩B .
So, the intersection between sets A and B is,
A∩B={ 3,5,7,9,11 }∩{ 7,9,11,13 } ={ 7,9,11 }
Hence, A∩B={ 7,9,11 } .
(ii)
The intersection of the sets B and C is denoted as B∩C .
Given, B={ 7,9,11,13 } and C={ 11,13,15 }
So, the intersection between sets B and C is,
B∩C={ 7,9,11,13 }∩{ 11,13,15 } ={ 11,13 }
Hence, B∩C={ 11,13 } .
(iii)
The intersection of the sets A , C and D is denoted as A∩C∩D .
Given, A={ 3,5,7,9,11 } , C={ 11,13,15 } and D={ 15,17 }
So, A∩C∩D can be calculated as
A∩C∩D={ 3,5,7,9,11 }∩{ 11,13,15 }∩{ 15,17 } ={ 11 }∩{ 15 } =ϕ
Hence, A∩C∩D=ϕ .
(iv)
The intersection of the sets A and C is denoted as A∩C .
Given, A={ 3,5,7,9,11 } and C={ 11,13,15 }
So, A∩C can be calculated as
A∩C={ 2,3,4,5,6 }∩{ 9,11,13,15 } =ϕ
Hence, A∩C=ϕ .
(v)
The intersection of the sets B and D is denoted as B∩D .
Given, B={ 7,9,11,13 } and D={ 15,17 }
So, the intersection between B and D is
B∩D={ 7,9,11,13 }∩{ 15,17 } =ϕ
Hence, B∩D=ϕ .
(vi)
Given, A={ 3,5,7,9,11 } , B={ 7,9,11,13 } and C={ 11,13,15 }
So, A∩( B∪C ) can be calculated as
A∩( B∪C )={ 3,5,7,9,11 }∩( { 7,9,11,13 }∪{ 11,13,15 } ) ={ 3,5,7,9,11 }∩{ 7,9,11,13,15 } ={ 7,9,11 }
Hence, A∩( B∪C )={ 7,9,11 } .
(vii)
The intersection of the sets A and D is denoted as A∩D .
Given, A={ 3,5,7,9,11 } and D={ 15,17 }
So, A∩D can be calculated as
A∩D={ 2,3,4,5,6 }∩{ 15,17 } =ϕ
Hence, A∩D=ϕ .
(viii)
Given, A={ 3,5,7,9,11 } , B={ 7,9,11,13 } and D={ 15,17 }
So, A∩( B∪D ) can be calculated as
A∩( B∪D )={ 3,5,7,9,11 }∩( { 7,9,11,13 }∪{ 15,17 } ) ={ 3,5,7,9,11 }∩{ 7,9,11,13,15,17 } ={ 7,9,11 }
Hence, A∩( B∪D )={ 7,9,11 } .
(ix)
Given, A={ 3,5,7,9,11 } , B={ 7,9,11,13 } and C={ 11,13,15 }
So, ( A∩B )∩( B∪C ) can be calculated as
( A∩B )∩( B∪C )=( { 3,5,7,9,11 }∩{ 7,9,11,15 } )∩( { 7,9,11,13 }∪{ 11,13,15, } ) ={ 7,9,11 }∩{ 7,9,11,13,15 } ={ 7,9,11 }
Hence, ( A∩B )∩( B∪C )={ 7,9,11 } .
(x)
Given, A={ 3,5,7,9,11 } , B={ 7,9,11,13 } , C={ 11,13,15 } and D={ 15,17 }
So, ( A∪D )∩( B∪C ) can be calculated as
( A∪D )∩( B∪C )=( { 3,5,7,9,11 }∪{ 15,17 } )∩( { 7,9,11,13 }∪{ 11,13,15, } ) ={ 3,5,7,9,11,15,17 }∩{ 7,9,11,13,15 } ={ 7,9,11,15 }
Hence, ( A∪D )∩( B∪C )={ 7,9,11,15 } .