Soln:
Let=z
(x−1x)2=z2
(x2+1x2−2)=z2
x2+1x2=z2+2
Now substituting in the equation:
6(z2−2)−25z+12=0
6z2+12−25z+12=0
6z2−25z+24=0
6z2−16z−9z+24=0
2z(3z−8)−3(3a−8)=0
(2z−3)(3z−8)=0
z=32 ; z=83
x−1x=32
x−1x=83
2x2=3x−2=0
3x2−8x−3=0
2x2−4x+x−2=0
3x2−9x+x−3=0
x(x−2)+1(x−2)=0
3x(x−3)+1(x−3)=0
(2x+1)(x−2)=0
(3x+1)(x−3)=0
x=−12 , x=2
x=−13 , x=3
So,the roots are:−12,2,−13,3
Hence,Option (a).