The correct option is
A True
Writing 6n=(1+5)n
We know that
(a+b)n=nC0anb0+nC1an−1b1+.....+nCnan−nbn
Putting a=1, b=5
(6)n=nC01n50+nC11n−151+nC21n−252+....+nCn1n−n5n
=nC050+nC151+nC252+....+nCn5n
=1×1+n!1!(n−1)!51+n!2!(n−2)!52+....+1×5n
=1+n(n−1)!1!(n−1)!51+n(n−1)(n−2)!2!(n−2)!52+....+1×5n
=1+n(5)+n(n−1)252+....+5n
Thus, (6)n=1+5n+n(n−1)252+....+5n
(6)n−5n=1+n(n−1)252+....+5n
(6)n−5n=1+52(n(n−1)2+....+5n−2)
(6)n−5n=1+25(n(n−1)2+....+5n−2)
(6)n−5n=1+25k
where k=n(n−1)2+....+5n−2
The above equation is of the form
Dividend = Divisor × Quotient + Remainder
6n−5n=25k+1
Hence 6n−5n always leave remainder 1 when dividing by 25.