wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

6n−5n always leaves remainder 1 when divided by 25.

A
True
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
False
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A True
Writing 6n=(1+5)n

We know that

(a+b)n=nC0anb0+nC1an1b1+.....+nCnannbn

Putting a=1, b=5

(6)n=nC01n50+nC11n151+nC21n252+....+nCn1nn5n

=nC050+nC151+nC252+....+nCn5n

=1×1+n!1!(n1)!51+n!2!(n2)!52+....+1×5n

=1+n(n1)!1!(n1)!51+n(n1)(n2)!2!(n2)!52+....+1×5n
=1+n(5)+n(n1)252+....+5n

Thus, (6)n=1+5n+n(n1)252+....+5n

(6)n5n=1+n(n1)252+....+5n

(6)n5n=1+52(n(n1)2+....+5n2)

(6)n5n=1+25(n(n1)2+....+5n2)

(6)n5n=1+25k

where k=n(n1)2+....+5n2

The above equation is of the form

Dividend = Divisor × Quotient + Remainder

6n5n=25k+1

Hence 6n5n always leave remainder 1 when dividing by 25.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Binomial Coefficients
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon