The given equations are:
6(ax + by) = 3a + 2b
⇒ 6ax + 6by = 3a + 2b ...............(i)
and 6(bx − ay) = 3b − 2a
⇒ 6bx − 6ay = 3b − 2a ...................(ii)
On multiplying (i) by a and (ii) by b, we get:
6a2x + 6aby = 3a2 + 2ab ................(iii)
6b2x − 6aby = 3b2 − 2ab ....................(iv)
On adding (iii) and (iv), we get:
6(a2 + b2)x = 3(a2 + b2)
On substituting in (i), we get:
⇒ 3a + 6by = 3a + 2b
⇒ 6by = 2b
⇒ y =
Hence, the required solution is and .