(7+4√3)100 = I + f, where I is the integral part and f is the fractional part of
(7+4√3)100. Find the value of (I + f)(1 - f)
(7+4√3)100 = I + f
Consider
(7−4√3)100
0 < (7−4√3)100 < 1
Let (7−4√3)100 = f'
I + f + f' = (7+4√3)100 + (7−4√3)100 = 2[nC0 7100(4√3)0 + nC1799(4√3)1..................]
⇒ 1 + f + f' is an even integer.
But we know 0 < f + f' < 2 ..............(1)
For I + f + f' to be an integer, f + f' should also be an integer.
The only integer value it can take is 1(from(1)).
⇒ f + f' = 1
⇒(1 - f) = f'
⇒(I + f)(1 - f) = (I + f)(f')
=(7+4√3)100 (7−4√3)100
= [(7+4√3)(7−4√3)]100
= [1]100 = 1