The given function is sin4xsin8x
∫ sin4xsin8xdx (1)
Also, sinAsinB= 1 2 { cos(A−B)−cos( A+B ) }(2)
Compare (1) and (2),
A=4x and B=8x
Use (2) to further solve the equations,
∫ sin4xsin8xdx = ∫ cos(4x−8x)−cos(4x+8x) dx = 1 2 ∫ { cos(−4x)−cos(12x) }dx = 1 2 ∫ cos(4x)dx− 1 2 ∫ cos(12x) dx = 1 2 ( sin4x 4 − sin12x 12 )+c
Thus, the integral of the function sin4xsin8x is 1 2 ( sin4x 4 − sin12x 12 )+c.