wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

8. Prove that :
(i) sinA+sin3A+sin5AcosA+cos3A+cos5A=tan3A
(ii) (ii)cos3A+2cos5A+cos7AcosA+2cos3A+cos5A=cos5Acos3A
(iii) cos4A+cos3A+cos2Acos4A+sin3A+sin2A=cot3A
(iv) sin3A+sin5A+sin7A+sin9Acos3A+cos5A+cos7A+cos9A=tan6A
(v) sin5Asin7A+sin8Asin4Acos4A+cos7A+cos7Acos5Acos8A=cot6A
(vi) sin5A+cos2Asin6A cosAsinA sin2Acos2A cos3A=tanA
(vii) sin11A+sinA+sin7A+sin3Acos11A sinA+cos7A sin3A=tan8A
(viii) sin3A cos4AsinA cos2Asin4A sinA+cos6A cosA=tan2A
(ix) sinA sin2A+sin3A sin6AsinA cos2A+cos3A cos6A=tan5A
(x) sinA+2sin3A+sin5Asin3A+2sin5A+sin7A=sin3Asin5A
(xi) sin(θ+ϕ)2sinθ+sin(θ+ϕ)cos(θ+ϕ)2cosθ+cos(θ+ϕ)

Open in App
Solution

(i) We have,
LHS=sinA+sin3A+sin5AcosA+cos3A+cos5A=(sin5A+sinA)+sin3A(cos5A+cosA)+cos3A=2sin(5A+A2)cos(5AA2)+sin3A2cos(5A+A2)cos2sin(5AA2)+cos3A=2sin3A cos2A+sin3A2cos3A cos2A+cos3A=sin3A(2cos2A+1)cos3A(2cps2A+1)=sin3Acos3A=tan3A=RHSsinA+sin3A+sin5AcosA+cos3A+cos5A=tan3A

(ii) cos3A+2cos5A+cos7AcosA+2cos3A+cos5A=cos5Acos3ALHS=cos3A+2cos5A+cos7AcosA+2cos3A+cos5A=(cos7A+cos3A)+2cos5A(cos5A+cosA)+2cos3A=2cos(7A+3A2)cos(7A3A2)+2cos5A2cos(5A+A2)cos(5AA2)+cos3A=2cos5A cos2A+2cos5A2cos3A cos2A+2cos3A=2cos5A(cos2A+1)2cos3A(cos2A+1)=2cos5A2cos3Acos3A+2cos5A+cos7AcosA+2cos3A+cos5A=cos5Acos3A

(iii) cos4A+cos3A+cos2Acos4A+sin3A+sin2A=cot3ALHS=(cos4A+cos2A)+cos3A(sin4A+sin2A)+sin3A=2cos(4A+2A2)cos(4A2A2)+cos3A2sin(4A+2A2)cos(4A2A2)+sin3A=2cos3A cosA+cos3A2sin3A cosA+sin3A=cos3A(2cos A+1)sin3A(2cosA+1)=cos3AsinA=cot3A=RHS cos4A+cos3A+cos2Acos4A+sin3A+sin2A=cot3A

(iv) sin3A+sin5A+sin7A+sin9Acos3A+cos5A+cos7A+cos9A=tan6A
We have,
LHS=fracsin3A+sin5A+sin7A+sin9Acos3A+cos5A+cos7A+cos9A=(sin9A+sin3A)+(sin7A+sin5A)(cos9A+cos3A)+(cos7A+cos5A)=2sin(9A+3A2)cos(9A3A2)+2sin(7A+5A2)cos(7A5A2)2cos(9A+3A2)cos(9A3A2)+2cos(9A+3A2)+2cos2sin(7A+5A2)cos(7A5A2)=2sin6A cos3A+2sin6A cosA2cos6A cos3A+2cos6A cosA=2sin6A(cos3A+cosA)2cos6A(cos3A+cosA)=sin6Acos6A=tan6A=RHSsin3A+sin5A+sin7A+sin9Acos3A+cos5A+cos7A+cos9A=tan6A

(v) sin5Asin7A+sin8Asin4Acos4A+cos7A+cos7Acos5Acos8A=cot6A
We have,
LHS=sin5Asin7A+sin8Asin4Acos4A+cos7A+cos7Acos5Acos8A=(sin7Asin5A)+(sin8Asin4A)(cos7Acos5A)(cos8Acos4A)=[2sin(7A5A2)cos(7A+5A2)]+[2sin(8A4A2)cos(8A+4A2)]2sin(7A+5A2)sin(7A5A2)[2sin(8A+4A2)sin(8A4A2)]=2sinA cos6A+2sin2A cos6A2sin6A sinA+2sin6A sin2A=2cos6A[sinA+sin2A]sinA+sin2A=cos6Asin6A=cot6A=RHSsin5Asin7A+sin8Asin4Acos4A+cos7Acos5Acos8A=tan6A

(vi) sin5A+cos2Asin6A cosAsinA sin2Acos2A cos3A=tanA
We have,
LHS=sin5A+cos2Asin6A cosAsinA sin2Acos2A cos3A=2(sin5A cos2A)+sin6cosA2(sinA sin2Acos2Acos3A)=2sin5A cos2A2sin6A cosA2sinA sin2A2cos2A cos3A=sin(5A+2A)+sin(5A2A)[sin(6A+A)+sin(6A2A)]cos(2AA)cos(2A+A)[cos(3A+2A)+cos(3A2A)]=sin7A+sin3Asin7Asin5AcosAcos3Acos5AcosA=sin3Asin5Acos3Acos5A=(sin5Asin3A)(cos5A+3A)=sin5Asin3Acos5A+cos3A=2sin(5A3A2)cos(5A+3A2)2cos(5A+3A2)cos(5A3A2)=sinA cos4Acos4A cosA=sinAcosA=tanA=RHSsin5A cos2Asin6A cosAsinA sin2Acos2A cos3A=tanA

(vii) sin11A+sinA+sin7A+sin3Acos11A sinA+cos7A sin3A=tan8AWehave,LHS=sin11A sinA+sin7A sin3Acos11A sinA+cos7A sin3A=2(sin11A sinA+sin7A sin3A)2cos11A sinA+cos7A sin3A=2sin11A 5inA+2 sin7A sin3A2cps11A sinA+2cos7A sin3A=cos(11AA)cos(11A+A)+cos(7A3A)cos(7A+3A)sin(11A+A)sin(11AA)+sin(7A+3A)sin(7A3A)=cos10Acos12A+cos4Acos10Asin12Asin10A+sin10Asin4A=(cos12Acos4A)sin12Asin4A=[2sin(12A+4A2)sin(12A4A2)]2sin(12A4A2)cossin(12A+4A2)=2sin8A sin4A2sin4A cos8A=sin8Acos8A=tan8A=RHS sin11A sinA sin7A sin3Asin11A sinA+cos7A sin3A=tan8A

(viii) sin3A cos4AsinA cos2Asin4A sinA+cos6A cosA=tan2ALHS=sin3A cos4AsinA cos2Asin4A sinA+cos6A cosA=2sin3A cos4AsinA cos2A2(sin4A sinA+cos6A cosA)=2sin3A cos4A2sinAcos2A2sin4A sinA+2cos6A cosA=sin(4A+3A)sin(4A+3A)[sin(2A+A)sin(2AA)]cossin(4AA)cos(4A+A)+cos(6A+A)+cos(6AA)=sin(7A)sin(A)sin(3A)+sin(A)cos(3A)cos(5A)+cos(7A)+cos(5A)=sin(7A)sin(3A)cos(3A)+cos(7A)=2sin(7A3A2)cos(7A+3A2)2cos(7A+3A2)cos(7A3A2)=sin2Acos2A=tan2A=RHS

(ix) sinA sin2A+sin3A sin6AsinA cos2A+cos3A cos6A=tan5A
We have,
LHS=sinA sin2A+sin3A sin6AsinA cos2A+cos3A cos6A=2[sinA sin2A+sin3A sin6A]2[sinA cos2A+sin3A cos6A]=2sin2A sinA+2sin6A sin3A2cos2A sinA+2cos6A sin3A=cos(2AA)cos(2A+A)+cos(6A3A)cos(6A+3A)sin(2A+A)sin(2AA)+sin(6A+3A)sin(6A3A)=cosAcos3Acos9Asin3AsinA+sin9Asin3A=cosAcos9Asi9AsinA=[cos9AcosA]sin9AsinA=(2sin(9A+A2))×(9AA2)2sin(9AA2)×cos(9A+A2)=sin5A sin4Asin4A cos5A=tan5A=RHS sinA sin2A+sin3A sin6AsinA cos2A+sin3A+cos6A=tan5A

(x) sinA+2sin3A+sin5Asin3A+2sin5A+sin7A=sin3Asin5A
We have.
LHS=sinA+2sin3A+sin5Asin3A+2sin5A+sin7A=sin5A+2sinA+2sin3Asin7A+2sin3A+2sin5A=2sin(5A+A2)cos(5AA2)+2sin3A2sin(7A+3A2)cos(7A3A2)+2sin5A=2sin3A cos2A+2sin3A2sin5A cos2A+sin5A=2sin3A(cos2A+1)2sin5A(cos2A+1)=sin3Asin5AsinA+2sin3A+sin5Asin3A+2sin5A+sin7A=sin3Asin5A

(xi) sin(θ+ϕ)2sinθ+sin(θϕ)cos(θ+ϕ)2cosθ+cos(θϕ)=sin(θ+ϕ)+sin(θϕ)2sinθcos(θ+ϕ)+cos(θϕ)2cosθ=2sin[(θ+ϕ)+(θϕ)2]cos[(θ+ϕ)(θϕ)2]2sinθ2cos[(θ+ϕ)+(θϕ)2]cos[(θ+ϕ)+(θϕ)2]2cosθ=2sin(θ)cos(ϕ)2sinθ2cos(θ)cos(ϕ)2cosθ=2sinθ(cosϕ1)2cosθ(cosϕ1)=sinθcosθ=tanθ sin(θ+ϕ)2sinθ+sin(θϕ)cos(θ+ϕ)2cosθ+cos(θϕ)=tanθ


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon