Given that,
sec 2 2x=1−tan2x 1+ tan 2 2x=1−tan2x ( ∵ sec 2 x=1+ tan 2 x ) tan 2 2x+tan2x=0 tan2x( tan2x+1 )=0
Hence,
tan2x=0
tan2x+1=0 tan2x=−1
General solution for tan2x=0 ,
Consider,
tanx=tany tan2x=tan2y (1)
Also,
tan2x=0 (2)
From equations (1) and (2),
tan2y=0 y=0
General solution is given by,
2x=nπ+2y 2x=nπ+0 x= nπ 2
General solution for tan2x=−1 Consider,
tan2x=tan2y (1)
Here,
tan2x=−1 (2)
From equations (1) and (2),
tan2y=−1 tan( 2y )=tan( 3π 4 ) 2y= 3π 4
General solution is given by,
2x=nπ+2y ( n∈z )
For, 2y= 3π 4
2x=nπ+ 3 4 π x= nπ 2 + 3 8 π
Where, n∈z
Thus, the general solutions are,
For tan2x=0, x= nπ 2
For tan2x=−1, x= nπ 2 + 3π 8 where, n∈z