[(−8)×(−3)]×(−4)] is not equal to
(a) (−8)×[(−3)×(−4)]
(b) [(−8)×(−4)]×(−3)
(c) [(−3)×(−8)]×(−4)
(d) (−8)×(−3)−(−8)×(−4)
[(−8)×(−3)]×(−4)=[(−3)×(−8)]×(−4)
[∵ As multiplication is commutative, i.e. a × b = b × a ]
=(−3)×[(−8)×(−4)] ---(c) [∵ as multiplication is associative, i.e. a×(b×c)=(a×b)×c]
=[(−8)×(−4)]×(−3)]---(b) [Since commutative property applied on [(−8)×(−4)] and (−3)]
=(−8)×[(−4)×(−3)]
=(−8)×[(−3)×(−4)] ---(a) [Since, commutative property]
Hence, [−(8)×(−3)]×(−4) is not equal to (−8)×(−3)−(−8)×(−4).