Factorise the polynomial 8a3−27b3−64c3−72abc
Given polynomial 8a3+27b3+64c3−72abc
=(2a)3+(3b)3+(4c)3−3(2a)(3b)(4c)
We know that x3+y3+z3−3xyz=(x+y+z)(x2+y2+z2−xy−yz−zx)
Substitute x=2a,y=3b and z=4c in the above formula, we get
(2a)3+(3b)3+(4c)3−3.2a.3b.4c=(2a+3b+4c)[(2a)2+(3b)2+(4c)2−(2a.3b)−(3b.4c)−(4c.2a)]
=(2a+3b+4c)(4a2+9b2+16c2−6ab−12bc−8ca)
Therefore, the factors of the given expressions are (2a+3b+4c)(4a2+9b2+16c2−6ab−12bc−8ca)