Prove that:(i) 13+√7+1√7+√5+1√5+√3+1√3+1=1(ii) 11+√2+1√2+√3+1√3+√4+1√4+√5+1√5+√6+1√6+√7+1√7+√8+1√8+√9=2
Fill in the blanks.
(i) (−317)+(−125)=(−125)+(.....)
(ii) −9+−218=(......)+(−9)
(iii) (−813+37)+(−134)=(......)+[37+(−134)]
(iv) −12+(712+−911)=(−12+712)+(.....)
(v) 19−5+(−311+−78)={19−5+(.....)}+−78
(vi) −167+.....=......+−167=−167