The inverse of a function f:A→B exists if f is one-one onto i.e.,
y=f( x )⇒ f −1 ( y )=x .
The given inverse trigonometry function is cos −1 ( − 1 2 ) .
Let,
cos -1 ( − 1 2 )=y
cosy=− 1 2 =−cos( π 4 ) =cos( π− π 4 ) =cos( 3π 4 )
Since, the range of the principle value branch of cosec -1 is [ 0,π ] .
3π 4 ∈[ 0,π ]
Thus, the principle value of cos -1 ( − 1 2 ) is ( 3π 4 ) .