Given that,
sinx+sin3x+sin5x=0 ( sinx+sin5x )+sin3x=0 ( ∵sinx+siny=2sin x+y 2 cos x−y 2 ) 2sin3xcos2x+sin3x=0 ( ∵cos( −x )=cosx ) sin3x( 2cos2x+1 )=0
Hence,
sin3x=0
Or
2cos2x+1=0 cos2x=− 1 2
General solution for sin3x=0 ,
3x=nπ x= nπ 3 ( n∈z )
General solution for cos2x=− 1 2 cos2x=cos2y (1)
Here,
cos2x=− 1 2 (2)
From equations (1) and (2),
cos2y=− 1 2 cos( 2y )=cos( 2π 3 ) 2y= 2π 3
General solution is given by,
2x=2nπ±2y ( n∈z )
For, 2y= 2π 3
2x=2nπ± 2 3 π x=nπ± 1 3 π
Where, n∈z
Thus, the general solutions are,
For sin3x=0, x= nπ 3
For cos2x=− 1 2 , x=nπ± π 3 where, n∈z