wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

95-105 105-115 115-125 125-135 135-145 145-15510. Height9in cmsNumber ofboys1326301210

Open in App
Solution

The given data is:

Height in cms Number of boys
95-105 9
105-115 13
115-125 26
125-135 30
135-145 12
145-155 10

Creating a table as follows:

Height in cms Number of boys, f i Midpoint, x i f i x i | x i x ¯ | f i | x i x ¯ |
95-105 9 100 900 25.3 227.7
105-115 13 110 1430 15.3 198.9
115-125 26 120 3120 5.3 137.8
125-135 30 130 3900 4.7 141
135-145 12 140 1680 14.7 176.4
145-155 10 150 1500 24.7 247
i=1 n f i =100 i=1 n f i x i =12530 i=1 n f i | x i x ¯ | =1128.8

The formula to calculate the mean is given as,

x ¯ = i=1 n x i f i i=1 n f i x ¯ = 1 N i=1 n x i f i

Where, N is the sum of frequency.

Substitute 100 for N and 12530 for i=1 n x i f i in the above equation

x ¯ = 12530 100 =125.3

Therefore, the mean of the given data is 125.3.

The formula to calculate the mean deviation about the mean is,

M.D= i=1 n f i | x i x ¯ | i=1 n f i M.D= 1 N i=1 n f i | x i x ¯ |

Substitute 100 for N and 1128.8for i=1 n f i | x i x ¯ | in the above equation

M.D.= 1128.8 100 =11.28

Therefore, the mean deviation of the given data is 11.28.


flag
Suggest Corrections
thumbs-up
19
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Mean Deviation about Mean for Continuous Frequency Distributions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon