Double integrals and Triple Integrals
Trending Questions
Q. The value of the integral ∫20∫x0ex+ydydx is
- 12(e−1)
- 12(e2−1)2
- 12(e2−e)
- 12(e−1e)2
Q. By a change of variable x(u, v)=uv, y(u, v)=v/u in double integral, the integrand f(x, y) changes to f(uv, v/u)ϕ(u, v). Then, ϕ(u, v) is
- 2v/u
- 2uv
- v2
- 1
Q. The value of ∫30∫x0(6−x−y)dxdy is
- 13.5
- 27.0
- 40.5
- 54.0
Q. f(x, y) is a continuous function defined ouver (x, y)ϵ[0, 1]×[0, 1]. Given the two constraints, x>y2 and y>x2, the volume under f(x, y) is
- ∫y=1y=0∫x=√yx=y2f(x, y)dxdy
- ∫y=y=x2∫x=1x=y2f(x, y)dxdy
- ∫y=1y=0∫x=1x=0f(x, y)dxdy
- ∫y=√xy=0∫x=√yx=0f(x, y)dxdy
Q. The expression V=∫H0πR2(1−h/H)2dh for the volume of a cone is equal to
- ∫R0πR2(1−h/H)2dr
- ∫R0πRH(1−rR)2dr
- ∫H02πrH(1−r/R)dh
- ∫H02πrH(1+rR)2dr
Q.
Two circles pass through and their centres lie on . If and are maximum and minimum radii and , then the value of is.
Q. If a triangle PQR has vertex points P(2, 0), Q(0, 2) and R(0, 0), then the value of integral ∬5y dxdy evaluated over the triangle is
- 12
- 52
- 203
- 103
Q. A surface S(x, y)=2x+5y−3 is integrated once over a path consisting of the points that satissfy (x+1)2+(y−1)2=√2. The integral evaluates to
- 17√2
- 17√2
- √217
- 0
Q. The value of ∫1x=0∫x2y=0∫yz=0(y+2z)dz dy dx is
- 153
- 221
- 16
- 53
Q. The value of the integral ∫π0∫πysinxxdxdy, is equal to
- 2
Q. The value of ∫∞0∫∞0e−x2.e−y2dxdy is
- √π2
- √π
- π
- π2
Q. Given the shaded triangular region P shown in the figure. What is ∫∫xydxdy?
- 16
- 29
- 716
- 1