Inverse of matrix
Trending Questions
Q.
What is an inverse in matrix?
Q. If A=[2x0xx] and A−1=[10−12] then the value of x is
- 1
- 2
- 12
- None
Q. Let A=[2−0.103] and A−1=⎡⎣12a0b⎤⎦. Then (a+b)=
- 720
- 320
- 1960
- 1120
Q.
Find it using identity.
Q. Let A be an invertible matrix and suppose that the inverse of A is [−124−7]. Then the matrix A is
- ⎡⎣1274717⎤⎦
- [7241]
- ⎡⎣1−47−2717⎤⎦
- [7421]
Q. The inverse of the 2×2 matrix [2368] is
- ⎡⎣3−1−432⎤⎦
- ⎡⎣−4323−1⎤⎦
- [6−2−83]
- ⎡⎣4−32−31⎤⎦
Q. Let A, B , C, D be n× n matrices, each with non zero determinant and ABCD = I then B−1=
- D−1C−1A−1
- CDA
- ABC
- Does not exist
Q. The inverse of the matrix [3+2ii−i3−2i] is
- 112 [3+2i−ii3−2i]
- 112 [3−2i−ii3+2i]
- 114 [3+2i−ii3−2i]
- 114 [3−2i−ii3+2i]
Q. Inverse of matrix⎡⎢⎣010001100⎤⎥⎦ is
- ⎡⎢⎣001100010⎤⎥⎦
- ⎡⎢⎣100001010⎤⎥⎦
- ⎡⎢⎣100010001⎤⎥⎦
- ⎡⎢⎣001010100⎤⎥⎦
Q. For a given matrix P=[4+3i−ii4−3i], i=√−1, the inverse of matrix P is
- 124[4−3ii−i4+3i]
- 125[i4−3i4+3i−i]
- 124[4+3i−ii4−3i]
- 125[4+3i−ii4−3i]
Q. Let A be an invertible matrix and suppose that the inverse of A is [−124−7]. Then the matrix A is
- ⎡⎣1274717⎤⎦
- [7241]
- ⎡⎣1−47−2717⎤⎦
- [7421]
Q. If P, Q, R & S are non singular matrix of order three such that PQRS = I then R−1 is
- PQS
- QPS
- SPQ
- PSQ
Q. The inverse of the matrix A=[−3521] is
- ⎡⎢ ⎢⎣513−113213313⎤⎥ ⎥⎦
- ⎡⎢ ⎢⎣213513−113313⎤⎥ ⎥⎦
- ⎡⎢ ⎢⎣−113513213313⎤⎥ ⎥⎦
- ⎡⎢
⎢⎣113−513213313⎤⎥
⎥⎦
Q. The inverse of matrixis? ∣∣
∣∣101−111010∣∣
∣∣
Q. The inverse of the matrix
S=⎡⎢⎣1−10111001⎤⎥⎦is
S=⎡⎢⎣1−10111001⎤⎥⎦is
- ⎡⎢⎣101000011⎤⎥⎦
- ⎡⎢⎣011−1−11101⎤⎥⎦
- ⎡⎢⎣22−2−22−2022⎤⎥⎦
- ⎡⎢
⎢
⎢
⎢
⎢⎣1212−12−1212−12001⎤⎥
⎥
⎥
⎥
⎥⎦
Q. For a given matrix P=[4+3i−ii4−3i], i=√−1, the inverse of matrix P is
- 124[4−3ii−i4+3i]
- 125[i4−3i4+3i−i]
- 124[4+3i−ii4−3i]
- 125[4+3i−ii4−3i]
Q.
How do you factor ?
Q. The matix ∣∣∣1−41−5∣∣∣ is an inverse of the matix
- Ture
- False
Q. Let M4=I, (Where i denotes the identity matrix) and M≠I and M2≠I and M3≠I. Then, for any natural number k, K−1 equals:
- M4k+1
- M4k+2
- M4k+3
- M4k
Q.
Simplify the following :
Q. If A=⎡⎢⎣502030201⎤⎥⎦, thenA−1=
- ⎡⎢ ⎢ ⎢⎣10−20130−205⎤⎥ ⎥ ⎥⎦
- ⎡⎢ ⎢ ⎢⎣5020−130201⎤⎥ ⎥ ⎥⎦
- ⎡⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣1501201301201⎤⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎦
- ⎡⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣150−120130−1201⎤⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎦
Q.
Simplify the following: