Area of an Equilateral Triangle
Trending Questions
Q. The perimeter of an equilateral triangle is 36 cm. The area of the triangle is equal to
- 24√3cm2
- 36cm2
- 36√3cm2
- 24√2cm2
Q. If the area of an equilateral triangle is20√3cm2, then its perimeter is
12√5 cm
6√5 cm
8√5 cm
4√5 cm
Q.
The area of an equilateral triangle whose side is 2 cm is √A. The integral value of A is
Q.
A square whose diagonal is long has an area equal to
Q. If the perimeter of an equilateral triangle is 60 cm, then its area is 1732 cm2.
- False
- True
Q.
The sides of an equilateral triangle are (2a - b + 5), (a + b) and (2b - a + 2). What is the area of the triangle?
√34×a2
√34×b2
√34×49
√34×81
Q. A square and an equilateral triangle have equal perimeters. If the diagonal of the square is 12√2 cm, then the area of the triangle is:
- 24√2 cm2
- 24√3 cm2
- 48√3 cm2
- 64√3 cm2
Q. The area of a regular hexagon of side 4 cm is
- 16√3cm2
- 12√3cm2
- 24√3cm2
- 4√3cm2
Q. If the area of an equilateral triangle is 36√3 cm2, Then find the perimeter of the triangle is
24 cm
36 cm
12 cm
38 cm
Q. If the area of an equilateral triangle is 16√3cm2, then the perimeter of the triangle is
(3 Marks)
(3 Marks)
Q. Which of the following statements is true?
- We can find the area of a triangle if we know two of the sides of the triangle.
- We can find the area of a triangle if we know all the sides of the triangle.
- We can find the area of a triangle if we know two of the angles of the triangle.
- We can find the area of a triangle if we know all the angles of the triangle.