Equilateral and Isosceles Triangle Properties
Trending Questions
In an equilateral triangle, a perpendicular drawn from one of the vertices to the opposite side bisects the side.
True
False
A square is inscribed in an isosceles right triangle have one angle common. Show that the vertex of the square opposite the vertex of the common angle bisects the hypotenuse.
In the given equilateral triangle ABC, find the value of sin 30∘ and cos 30∘, without using tables.
AD is the perpendicular bisector of BC.
1√3, √3
12, √32
1√2, √2
12, 12
Show that,
(i) AD bisects BC
(ii) AD bisects ∠A.
- a
- a2
- √3a2
- 3a2
- False
- True
ABC is an isosceles triangle with AB = AC. Drawn AP ⊥ BC to show that ∠B=∠C.
In the given figure it is given that AB = CF, EF = BD and ∠AFE = ∠DBC. Then △AFE is congruent to △CBD by which criterion?
SSS
ASA
None of these
SAS
If A = 60o and B = 30o, find the value of
(sin A.cos B + cos A.sin B)2 + (cos A.cos B − sin A.sin B)2.
then find the value of (A+B).
In an equilateral triangle ABC , match the following ratios to the values
Trignometric ratiosValues(i)tan 60∘(a)1√3(ii)cot 30∘(b)√3(iii)cosec 30∘(c)2(iv)sec 30∘(d)2√3
(i) –a , (ii) – b , (iii) – a , (iv) – d
(i) –b , (ii) – b , (iii) – c , (iv) – d
(i) –a , (ii) – b , (iii) – c , (iv) – d
(i) –a , (ii) – b , (iii) – c , (iv) – b
If A=15∘, find the value of 4cos2A⋅sin4A⋅tan3A−1.
If A = 60o and B = 30o, find the value of
(sin A.cos B + cos A.sin B)2 + (cos A.cos B − sin A.sin B)2.
-1
2
1
0
- √3a2
- a
- 3a2
- a2
- 83
- 163
- 323√3
- 643
- cosBcosC
- sinCsinB
- sinBsinC
- tanBtanC
If A=15∘, find the value of 4cos2A⋅sin4A⋅tan3A−1.