Every Point on the Perpendicular Bisector of a Segment Is Equidistant from the End Points of the Segment
Trending Questions
Construct a triangle of sides and then a triangle similar to it whose sides are of the corresponding sides of the first triangle. Give the justification for the construction
Use graph paper for this question. Take 1 cm = 1 unit on both axes.
(i) Plot the points A(2, 2), B(6, 4) and C(3, 6).
(ii) Construct the locus of points equidistant from A and B.
(iii) Construct the locus of points equidistant from AB and AC.
(iv) Locate the point P such that PA = PB and P is equidistant from AB and AC.
Then the length(approximately) of PA in cm is
2.5 cm
1.5 cm
4 cm
3.5 cm
The bisectors of angle A and C of a quadrilateral ABCD intersect each other at P. Then P is equidistant from the opposite sides AB and CD.
True
False
In the above triangle ABC, AB = BC. BD is perpendicular to AC and EC bisects the angle ∠ACB. Which of the following is correct?
E is equidistant from AC and BC.
Both option(a) and option (b) are correct.
P is equidistant from points A and C
Both option(a) and option (b) are wrong.
On constructing a triangle ABC, with AB = 5.6 cm, AC = BC = 9.2 cm, the distance between the points which are both equidistant from AB and AC and also 2 cm from BC is
4 cm
4.4 cm
4.2 cm
4.3 cm