Factorisation of Algebraic Identities
Trending Questions
Q.
Factorise the following expression:
Q. factorise using suitable identities
p3(q-r)3+q3(r-p)3+r3(p-q)3
p3(q-r)3+q3(r-p)3+r3(p-q)3
Q.
Factorize the expression .
Q.
Factorise:
a8−2a4b4+b8
[(a2−b2)(a+b)(a−b)]2
[(a2+b2)(a+b)(a−b)]2
[(a+b2)(a+b)(a−b)]2
[(a2+b)(a+b)(a−b)]2
Q. Factors of (16x2+4y2+36z2+16xy+24yz+48zx), are_____.
- (4x + 2y - 6z)(4x + 2y - 6z)
- (4x - 2y + 6z)(4x - 2y + 6z)
- (4x - 2y + 6z)(4x + 2y - 6z)
- (4x + 2y + 6z)(4x + 2y + 6z)
Q.
Factorise .
Q. 9x² - 4 can be factorised as ___.
- (2x - 3)(2x + 3)
- (3x - 2 )(3x + 2)
- (3x + 2)(3x + 2)
- (2x - 3)(3x + 2)
Q.
Factorise:
Q.
Factorise the following using appropriate identities: [4 MARKS]
1)9x2+6xy+y2
2)4y2−4y+1
Q.
Factorise .
Q.
Expand: [√3x−√25y]2
3x2−25√6x+225
3x−2√6x y5+225y2
3x2−√6x+425
x2−25√6x+425
Q. Factorise:
81x3−3y3
81x3−3y3
- 3(9x−y)[9x2+3xy+y2]
- (3x−y)[9x2+3xy+y2]
- 3(3x−y)[9x2+6xy+y2]
- 3(3x−y)[9x2+3xy+y2]
Q. Factorise:
x3+125
x3+125
- (x+5)(x2−5x+25)
- (x+3)(x2−5x+25)
- (x+5)(x2−5x+25)
- (x+5)(x2−10x+25)
Q.
Factorize: 75(a+b)2−48(a−b)2.
3(a−9b)(9a−b))
3(a+3b)(3a+b))
3(a−9b)(9a+b))
3(a+9b)(9a+b))
Q. One of the factors of (a2−b2)(c2−d2)−4abcd is ______.
- (ac−bd+bc+ad)
- (ac+bd+bc−ad)
- (ac−bd+bc−ad)
- (ac+bd+bc+ad)
Q. Factorise: a4+4a2b2+4b4
- (a2+2b2)2
- (a2−2b2)2
- (2a2+b2)2
- (2a2−b2)2
Q. Factorise: x4−(x−4)4
- 16[x−2][x2−4x+8]
- 16[x−2][x2+4x+8]
- 32[x−2][x2−4x+8]
- 16[x+2][x2−4x+8]
Q.
Factorize the following expression:
Q.
Which of the following is/are factor(s) of
49p2−36?
- (7p−6)
- (7p+6)
- (5p+6)
- (6p+7)
Q.
Factorise .