Introduction to Geometric Constructions
Trending Questions
To construct an angle of 60∘ with a compass and ruler,
Steps of construction are:
Step1: Draw a ray AB
Step 2 will be
Using protractor, draw an angle 60∘
Taking D as center and any radius, draw an arc intersecting the previous arc at E
Taking D as center and same radius, draw an arc intersecting the previous arc at E
Taking A as centre and any convenient radius, draw an arc intersecting ray AB at a point D.
What is the meaning of the word bisect?
To divide into 3 parts
To cut something into 2 equal halves
To cut something into 5 equal pieces.
To cut something into 10 pieces.
Follow the following steps of constructions:
1) Draw a line segment OA.
2) With O as center and a short radius, draw an arc that cuts OA at B.
3) With B as center and the same radius (as in step 2), draw an arc that cuts the first arc at C.
4) With C as center and the same radius (as in step 2), draw an arc that cuts the first arc at D.
5) With C and D as centers, draw two arcs with equal radii such that they intersect at E.
6) Join O and E. What’s the measure of ∠AOE ?
60∘
45∘
75∘
90∘
What does a geometry box consist of? What are the main instruments used for construction? [1 MARK]
What is the relationship between perpendicular lines?
Why are accurate constructions necessary? [1 MARK]
Ali was asked to construct a square ABCD for which, the diagonal AC alone is given. He was given a compass and a straight edge (a ruler with NO markings). P is said to be the point of intersection of the diagonals of the square. Which of the following will be Alis second step of construction?
Side AB
Point P
Diagonal AC
Perpendicular bisector of AC
If and then side is:
- parallel
- perpendicular
- intersecting
- True
- False
- straight
- perpendicular
- transversal
- parallel
- 4:00
- 9:00
- 6:30
- 3:30
- False
- True
- False
- True
- False
- True
- Draw a line l and mention a point O on it.
- Join O and B. Extend OB to get a ray.
- With O as center and a short radius, draw an arc that cuts line l at A.
- With A as center and the same radius (as in step 2), draw an arc that cuts the first arc at B.