Laws of Exponents for Real Numbers
Trending Questions
If 27x=93x, find x.
If 2x=3y=12z, Show that 1z=1y+2x.
Prove that:
(i) 11+xa−b+11+xb−a=1
(ii) 11+xb−a+xc−a+11+xa−b+xc−b+11+xb−c+xa−c=1
If 10x=64, whatisthevalueof10x2+1?
80
81
18
42
Solve the following equations for x:
(i) 22x−2x+3+24 =0
(ii) 32x+4+1=2 . 3x+2
if abc=1, show that 11+a+b−1+11+b+c−1+11+c+a−1=1
5n+2−6×5n+113×5n−2×5n+1 is equal to
If (23)x(32)2x=8116, then x =
2
4
3
1
If x + y + z = 0, show that x3 + y3 + z3 = 3xyz.
If x−2=64, then x13+x0=
32
23
2
3
Determine (8x)x, if 9x+2=240+9x.
Assuming that x, y, z are positive real numbers, simplify each of the following:
(i) (√x−3)5
(ii) √x3y−2
(iii) (x−2/3y−1/2)2
(iv) (√x)−2/3√y4 ÷ √xy−1/2
(v) 5√243x10y5z10
(vi) (x−4y−10)5/4
(vii) (√2√3)5(67)2
If 4x−4x−1=24, then(2x)x equals
5√5
√5
25√5
125
Prove that :
(i) (xaxb)a2+ab+b2×(xbxc)b2+ab+c2×(xcxa)c2+ca+a2=1
(ii) (xaxb)c×(xbxc)a×(xcxa)b=1
If √5n=125, then5n√64 =
625
15
25
1125
Solve the following equations for x:
(i) 72x+3=1
(ii) 2x+1=4x−3
(iii)25x+3=8x+3
(iv) 42x=132
(v)4x−1×(0.5)3−2x=(18)x
(vi)23x−7=256
If a=3 and b=-2, find the values of:
(i) aa+bb (ii) ab+ba (iii)(a+b)ab
Ifx=213+223, Show that x3−6x=6.
The simplified form of (−127)−23 is
Evaluate (8149)−32
If 1176=2a×3b×7c, find the values of a, b and c. Hence, compute the value of 2a×3b×7−c as a fraction.
Simplify : ⎡⎣{(625)−12}−14⎤⎦2
If 8x+1 = 64, what is the value of 32x+1 ?
1
3
9
27
What is the unit digit in ?
The number of consecutive zeros in 23×34×54×7, is
4
5
2
3
If 2m+n2n−m=16, 3p3n=81 and a=2110, then a2m+n−p(am−2n+2p)−1=
If x is a positive real number and x2=2, then x3=
√2
3√2
2√2
4
If 3x=5y=(75)z, show that z=xy2x+y
The value of {8−43÷2−2}12 is
Simplify: (i)(xa+bxc)a−b(xb+cxa)b−c(xc+axb)c−a(ii)lm√xlxm×mn√xmxn×nl√xnxl