Linear Pair and Its Axioms
Trending Questions
Which one of the following statements are true?
If two angles form a linear pair, then each of these angles is of measure 180∘.
Angles forming a linear pair can both be acute angles.
One of the angles forming a linear pair can be obtuse angle.
The sum of the angles of a linear pair is 180∘.
In the given figure AB and CD are two lines intersecting at O. If ∠AOC and ∠BOC are in ratio 2 : 3, find all angles.
- 72∘, 108∘, 108∘, 72∘
- 30∘, 120∘, 30∘, 120∘
- 50∘, 120∘, 50∘, 120∘
- 45∘, 100∘, 100∘, 45∘
If one angle of a linear pair is obtuse angle, what kind of angle is the other?
From the adjoining figure, if ∠2 = 55∘ and ∠5 = 60∘ then the lines m and n are
Parallel
Not parallel
Intersect at two points
Concurrent
- 121°
- 153°
- 105°
- 144°
- 40°
- 60°
- 80°
- 75°
In the figure below, lines AB and CD intersect at O. If ∠AOC + ∠BOE = 70∘ and ∠BOD = 40∘, find (2∠BOE).
In the figure, POQ is a line. The value of x is:
A) 20∘
B) 25∘
C) 30∘
D) 35∘
- 60∘
- 150∘
- 180∘
In the figure given, if AB || CD, Find the values of 'p' and 'q'.
In the given figure, lines XY and MN intersect at O. If ∠POY=90∘ and a:b = 2:3, find c.
In the given figure, AB and CD are two lines intersecting at O. If ∠AOC and ∠BOC are in ratio 2 : 3, find all angles.
- 45∘, 100∘, 100∘, 45∘
- 30∘, 120∘, 30∘, 120∘
- 72∘, 108∘, 108∘, 72∘
- 50∘, 120∘, 50∘, 120∘
In the figure below, lines AB and CD intersect at O. If ∠AOC + ∠BOE = 70∘ and ∠BOD = 40∘,
find (2∠BOE).
In the given figure AB and CD are two lines intersecting at O. If ∠AOC and ∠BOC are in ratio 2 : 3, find all angles.
- 72∘, 108∘, 108∘, 72∘
- 45∘, 100∘, 100∘, 45∘
- 30∘, 120∘, 30∘, 120∘
- 50∘, 120∘, 50∘, 120∘
value of x. Also find ∠AOC, ∠COD and ∠BOD.
50∘.
- 70°
- 100°
- 90°
- 80°
- True
- False
In the figure below, lines XY and MN intersect at point O. If ∠POY = 90∘ and ∠ A : ∠ B = 2 : 3, find (∠ C)2.
- 77.5∘
- 63∘
- 55∘
- 68∘
- 50∘
- 130∘
- 40∘
- 310∘
In the figure below, lines AB and CD intersect at O. If ∠AOC + ∠BOE = 70∘ and ∠BOD = 40∘, find (2 ∠BOE).
- 50∘
- 30∘
- 60∘
- 90∘