Proving Angle Sum Property
Trending Questions
- 80∘
- 60∘
- 30∘
- 45∘
- 110
- 120∘
- 60∘
- 180∘
If 2∠A=3∠B=6∠C in a ΔABC, then ∠A, ∠B, ∠C are
30°, 60°, 90°
90°, 60°, 30°
30°, 90°, 60°
45°, 90°, 45°
Which of the following is/are true?
Only (ii)
Only (i)
Only (iii)
All. (i), (ii) and (iii)
In the figure given below, if lines PQ and RS intersect at point T, such that,
∠PRT=40∘, ∠RPT=95∘ and ∠TSQ=75∘, then find 2∠SQT.
- None of the above
120∘
150∘
80∘
90∘
If 2∠A=3∠B=6∠C in a ΔABC, then ∠A, ∠B, ∠C are
30∘, 60∘, 90∘
90∘, 60∘, 30∘
30∘, 90∘, 60∘
45∘, 90∘, 45∘
v) All the angles of a triangle can be equal to 60∘
Find the value of X in the figure below:
60∘
70∘
80∘
100∘
- ∠6=∠7
- ∠1=∠3
- ∠4=∠7
- ∠2=∠4
Two lines AB and DE are parallel to each other. The line CM is parallel to both the lines AB and DE. AE and BD intersect each other at point C. If ∠ACB = 40∘ and ∠CED = 60∘, find the value of ∠BCM.
80∘
60∘
120∘
30∘
If one angle of a triangle is equal to the sum of the other two angles, then the triangle is an isosceles triangle.
False
True
Find the value of (x+y) from the figure below:
120∘
60∘
80∘
45∘
Sum of the interior angles of a triangle is ___.
90∘
360∘
135∘
180∘
In the figure, the bisector of B and C meet at O. Then ∠ BOC is
90∘ + 12∠ B
90∘ + 12∠ A
90∘ + 12∠ C
90∘ - 12∠ A
Find the value of X in the figure below:
60∘
70∘
80∘
90∘
- ∠A + ∠C
- ∠B + ∠C
- ∠A + ∠B
Angles of a triangle are in the ratio 2 : 4 : 3. The smallest angle of the triangle is
30∘
60∘
80∘
40∘
In the figure, sides QP and RQ of ΔPQR are produced to points S and T, respectively. If ∠SPR = 135∘ and ∠PQT = 110∘, find 2∠PRQ.
90∘
150∘
110∘
130∘