Rationalisation
Trending Questions
If x=2+√3, find the value of x3+1x3.
If x=3+2√2, then find the value of √x−1√x.
If x=2+√3, find the value of x+1x.
If x=3+√8, find the value of x2+1x2.
If x=9−4√5, find the value of x2+1x2
The value of √3−2√2 is
√2−1
√3−√2
√2+1
√3+√2
If x=√5+√3√5−√3 and y=√5−√3√5+√3, then x + y + xy =
9
5
17
7
If √2=1.4142, then √√2−1√2+1 is equal to
2.4142
0.1718
5.8282
0.4142
Rationalise the denominator in each of the following and hence evaluate by taking √2=1.414, √3=1.732 and √5=2.236 upto three places of decimal.
(i)4√3(ii)6√6(iii)√10−√52(iv)√22+√2(v)1√3+√2
Find the value to three places of decimals of each of the following. It is given that √2=1.414, √3=1.732, √5=2.236 and √10=3.162.
(i) 2√3
(ii) 3√10
(iii) √5+1√2
(iv) √10+√15√2
(v) 2+√33
(vi) √2−1√5
If , then the value of and is
Find the value of 6√5−√3, it being given that √3=1.732 and √5=2.236.
The conjugate of a complex number is , then that complex number is
4011
4211
4311
3911
Simplify the following
(i)√45−3√20+4√5(ii)√248+√549(iii)4√12×7√6(iv)4√28+3√7+3√7(v)3√3+2√27+7√3(vi)(√3−√2)2(vii)4√81−83√216+155√32+√225(viii)3√8+1√2(ix)2√33−√36
If √2=1.41 then 1√2=?
(a) 0.075 (b) 0.75 (c) 0.705 (d) 7.05
Express each one of the following with rational denominator :
(i) 13+√2
(ii) 1√6−√5
(iii) 16√41−5
(iv) 305√3−3√5
(v) 12√5+√3
(vi) 3√3+12√2−√3
(vii) 6−4√26+4√2
(viii) 3√2+12√5−3
(ix) b2√a2+b2+a
If a=√2+1, then find the value of a−1a.
If √2=1.414, then the value of √6−√3 upto three places of decimal is ______ .
0.235
0.717
1.414
0.471
If √3−1√3+1=x+y√3, find the value of x and y.
The rationalising factor for the number 3−7√2 is
3+2√7
−3−2√7
3+7√2
−3+7√2
The simplest rationalising factor of √3+√5 is
√3−5
3−√5
√3+√5
√3−√5
4√3+5√2√48+√18
The simplest rationalising factor of 2√5−√3 is
2√5+3
2√5+√3
√5+√3
√5−√3
Find the values of each of the following correct to three places of decimals, it being given that √2=1.4142, √3=1.732, √5=2.2360, √6=2.4492 and √10=3.162.
(i) 3−√53+2√5
(ii) 1+√23−2√2
The rationalisation factor of √3 is
−2√3
1√3
2√3
−√3
Write the reciprocal of 5+√2.
In each of the following determine rational numbers a and b :
(i) √3−1√3+1=a−b√3
(ii) 4+√22+√2=a−√b
(iii) 3+√23−√2=a+b√2
(iv) 5+3√37+4√3=a+b√3
(v) √11−√7√11+√7=a−b√77
(vi) 4+3√54−3√5=a+b√5
If x=√6+√5, then x2+1x2−2=
2√5
2√6
24
20
If x=3√2+√3, then x3+1x3=
4
8
9
2