Rationalising Factor
Trending Questions
Rationalize the denominator of 5√3−√5
-5(√3+√5)/2
-(√3+√5)/2
-5(√3+√5)/4
-3(√3+√5)/2
Find the value of and in the following:
What is the product of 18−3√7 and its conjugate?
1
8−3√7
3√7
8+3√7
Find the number of integers x which satisfies the inequality 31+√3 < x < 3√5−√3
2
3
4
5
- 5
- 13
- 19
- 35
If 5√3−√2=a√3−b√2, then the values of 'a' and 'b' are _________.
a=−5, b=−5
a=−5, b=5
a=5, b=−5
a=5, b=5
12+√3 on simplifying is
4
2−√3
4−√3
2√3
(ii) 7+3√53+√5−7−3√53−√5
Simplify 12−√7 by rationalising the denominator.
−2+√73
2−√33
−2−√33
2+√73
- √7+√6
- √7−√6
- √6−√7
- None of these
Simplify 5−√105+√10 - 5+√105−√10
20√10
35
43√10
-43√10
- √5
- 2√5
- √3
- 2√3
√10+√5−√3√3+√10−√5
If x=√2−1(x−1x)3 = ______
-4
-8
4
8
11+√2−√3
- √3
- 3√3
- 4√3
- 0
- 8−5√214
- 5−8√214
- 8−5√218
- 5−8√218
4+√54−√5+4−√54+√5=
2
2111
4211
1
[2 Marks]
√2√2+√3−√5
(i)23√3(ii)√40√3(iii)4√3+5√2√48+√18
- 2+21√339
- 21+2√339
- 21−2√339
- 2−21√339
The rationalising factor for the number 3−7√2 is
3+2√7
−3−2√7
3+7√2
−3+7√2
1√a+√b+√a+b
Fill in the blanks:
Rationalise the denominator in 53√3
5√59
5√19
5√33
5√39
(√3+√5)(√5+√2)√2+√3+√5