SSS Similarity
Trending Questions
Q. Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of ΔPQR. Show that ΔABM ≅ ΔPQN
Q.
State true or false:
Triangles shown below are similar.
True
False
Q. Question 3 (i)
Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of ΔPQR (see the given figure). Show that:
ΔABM≅ΔPQN
Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of ΔPQR (see the given figure). Show that:
ΔABM≅ΔPQN
Q. 17. ABC is a right triangle such that AB=AC and bisector of angle C intersects the side AB at D. Prove that AC+AD=BC
Q. Question 6
If in two ΔDEF and ΔPQR, ∠D=∠Q and ∠R=∠E, then which of the following is not true?
(A) EFPR=DFPQ
(B) DEPQ=EFRP
(C) DEQR=DFPQ
(D) EFRP=DEQR
If in two ΔDEF and ΔPQR, ∠D=∠Q and ∠R=∠E, then which of the following is not true?
(A) EFPR=DFPQ
(B) DEPQ=EFRP
(C) DEQR=DFPQ
(D) EFRP=DEQR
Q. Question 3 (ii)
Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of ΔPQR (see the given figure). Show that:
ΔABC≅ΔPQR
Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of ΔPQR (see the given figure). Show that:
ΔABC≅ΔPQR
Q. In the given figure, if AD = BC and AD || BC, then .
- AB = AD
- AB = DC
- AC = BC
Q. (H): In }△ ABC, D is mid point of }\overline{BC} . }E is foot of perpendicular } from }C on external angle bisector of }\angle BAC . prove 2 DE = } AB+ AC
Q. In ΔABC, AB = AC and AD is the median. ΔADB and ΔADC are
- similar by AA similarity criterion
- similar by SAS similarity criterion
- similar by SSS similarity criterion
- not similar
Q.
In the given figure, and are perpendicular to .
Prove that , If , then calculate , Find the ratio of .
Q. Let ABC be an acute angled triangle. Let D and F be mid points of BC and AB respectively. Let perpendiculars from F to AC and perpendicular from B on BC meet at N . Prove that ND is the circumradius of AB
Q. Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of ΔPQR (see the given figure). Show that:
ΔABM≅ΔPQN
ΔABM≅ΔPQN
Q. Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of ΔPQR (see the given figure). Show that:
ΔABM≅ΔPQN
ΔABM≅ΔPQN
Q. Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of ΔPQR (see the given figure). Show that:
ΔABM≅ΔPQN
ΔABM≅ΔPQN
Q. In fig, ABC and ABD are two triangles on the same base AB. If line-segment CD is bisected by AB at O, show that ar(ABC)=ar(ABD).
Q. 2. In a triangle ABC, prove that AB+BC+AC>2AB
Q. in △ ABC. prove that AB+BC+CA>2AB
Q. In the following figure, side BA of triangle ABC is extended upto D, and DE || CB. If \(\angle ADE = 70^\circ\) and \(\angle ACB = 40^\circ\), find the measure of \(\angle BAC.\)
Q. Which of the following statements are correct for the correspondence between the vertices of two triangles?
(P) The area of two similar triangles is equal.
(Q) The corresponding angles of both similar triangles are having same proportion.
(R) The corresponding sides of both similar triangles are having same proportion.
(S) The corresponding sides of both similar triangles are congruent.
(P) The area of two similar triangles is equal.
(Q) The corresponding angles of both similar triangles are having same proportion.
(R) The corresponding sides of both similar triangles are having same proportion.
(S) The corresponding sides of both similar triangles are congruent.
- Only statement R is correct.
- Statement Q and S are correct.
- Statement P, Q and R are correct.
- Statement Q and R are correct.
Q. Observe the given triangles and find the value of ∠P.
Q.
AB=10.8cm, AD=4.5cm, AC=4.8cm and AE=2.8cm
D and E are points on the sides AB and AC respectively of △ABC. For the following case, state whether DE∥BC:
- Yes
- No
- Can't say
- Ambiguos