Solution of a Pair of Linear Equations
Trending Questions
- 5/3
- 4/3
- 3
- 7/3
In the system of equations above, is a constant. For
Which of the following values of does the system have no solution?
- False
- True
The distance between the points (4, 8) and (k, -2) is 10. Find the value of k
3
4
6
10
Choose the correct statements.
Equation of AC is 2y = x
Equation of BD is y=x-2
The point of intersection of the lines is ( 4, 2)
All the above
The graph for the following system of equations :
2x+3y=5 and 6x+9y=40 is shown
S1:a1a2=b1b2≠c1c2
S2 : The two lines intersect each other.
S1 is true but S2 is false
S1 is false but S2 is true
S1 and S2 are true
S1 and S2 are false
- 5/3
- 4/3
- 3
- 7/3
What is the point that lies on x = 5 and has ordinate as -3 ?
- (-5, 3)
- (-5, -3)
- (5, -3)
- (5, 3)
The x and y intercepts of the line 2x + 3y =12 are
6, 4
12 , -2/3
-2/3 , 12
4, 6
The x and y intercepts of the line 2x + 3y =12 are respectively
4, 6
-2/3 , 12
6, 4
12 , -2/3
Find the X and Y intercepts of 3x + 5y = 15
- One solution
- Two solutions
- Infinitely many solutions
- No solution
Choose the correct statement
Equation of AC is 2y = x
Equation of BD is y=3x-2
The point of intersection of the lines is ( 4, 2)
All the above
The x-intercept of the line 3y = 12 is
12, -2/3
-2/3 , 12
6, 4
4, 6
What is the solution for the two lines in the given graph?
(0, 0)
(4, 2)
(-5, 2)
(5, 2)
Condition satisfied by the pair of equation 2x+3y=−5 and 4x+6y−10=0 is
= =
= ≠
≠
≠ = .
The x-intercept of the line 3y = 12 is
4, 6
-2/3 , 12
6, 4
12, -2/3
Find the X and Y intercepts of:
(a) x + 3y = 12
(b) 3x + 5y = 15 [4 MARKS]
- Infinite
- One
- Zero
What is the solution for the two lines in the given graph?
(5, 2)
(0, 0)
(4, 2)
(-5, 2)
- One
- Infinite
- Zero
Column I | Column II |
(a) Any line parallel to the x-axis is | (p) 3 |
(b) Any line parallel to the y-axis is | (q) y = mx |
(c) Any line passing through the origin is | (r) x = k |
(d) If the point (−2, 2) lies on the line ax + 4y = 2, then a = | (s) y = k |
(b) ......,
(c) ......,
(d) ......,
Column I | Column II |
(a) The equation of a line parallel to the x-axis is | (p) y = mx |
(b) The equation of a line parallel to the y-axis is | (q) |
(c) The equation of a line through the origin is | (r) x = k |
(d) If the point (2, 3) lies on the graph of the equation 3y = ax + 4, then a = | (s) y = k |
(b) ......,
(c) ......,
(d) ......,
Find the Y intercept of the line 4x - 3y + 9 = 0. [2 MARKS]
(i) A = {1, 2, 4, 5, 7}, B = {2, 3, 4, 8}
(ii) C = {x|x N, 5 < x 10} D = {y|y W, 5 y < 10}
(iii) E = {x|x I, x < 0} F = {y|y I, Y > 0}
The x and y intercepts of the line 2y = 3x
1/2 and 1/3
2 and 3
3 and 2
0 and 0
- 10 sq units
- 12 sq units
- 5 sq units
- 6 sq units