Standard Values
Trending Questions
The value of sin 90∘ and cos 0∘ are:
1, 0
0, 0
0, 1
1, 1
If the angles of a triangle are in the ratio , then the ratio of the perimeter of the triangle to its largest side is:
- √3
- 1√3
- 0
- Not defined.
If a triangle has angles 45∘, 45∘, and 90∘, what is the ratio of the sides of the triangle opposite to these angles respectively?
If sin B = 1, find the value of B if 0≤B≤90.
90
0
45
60
△ ABC, right angled at B, ∠ACB = 60∘, expressions for sec 60 and cosec 60 is
AC/BC , AC/AB
AC/BC , AC/BC
AC/AB , AC/AB
AC/AB , AC/BC
- 5FE=10AB is true
- 7FE=10AB is true
- 5FE=5AB is true
- 3FE=10AB is true
- 1
- 3
- 4
- 2
Given tan(A+B)=√3 and tan(A−B)=1√3
If B<A<90∘, then,
A (in degrees) =
B (in degrees) =
In △ABC, ∠B=90∘.
If tan A=1√3, then
sin A.cos C+cos A.sin C=
and, cos A.cos C−sin A.sin C=
- 45∘
- 30∘
- 60∘
- 90∘
If cos B = 1, find the value of B if 0≤B≤90.
60
45
90
0
- True
- False
In an equilateral triangle ABC , match the following ratios to the values
Trignometric ratiosValues(i)tan 60∘(a)1√3(ii)cot 30∘(b)√3(iii)cosec 30∘(c)2(iv)sec 30∘(d)2√3
(i) –a , (ii) – b , (iii) – a , (iv) – d
(i) –b , (ii) – b , (iii) – c , (iv) – d
(i) –a , (ii) – b , (iii) – c , (iv) – d
(i) –a , (ii) – b , (iii) – c , (iv) – b
- 3.6 cm
- 5.6 cm
- 4.6 cm
- 3.9 cm
If α=30∘ and AC = 10 cm then find the length of side BC in cm.
- 5
If tan A=1√3, then
sin A.cos C+cos A.sin C =