Using Monotonicity to Find the Range of a Function
Trending Questions
If , where and are differentiable functions, then is
- {0}
- {0, -1}
- {0, ± sin 1}
- {0, - sin 1}
m2+6m.
- 8
- 9
- - 8
- - 9
For real x, let f(x)=x3+5x+1, then
f is onto R but not one-one
f is one-one and onto R
f is neither one-one nor onto R
f is one-one but not onto R
- f(x)=ex
- f(x)=cos x
- f(x)=x3
- f(x)=sin x
- [0, 1]
- (0, 12]
- [12, 1]
- (0, 1]
The range of f(x)=tan−1(x2+x+a) ∀ xϵ R is a subset of [0, π2) then the range of a is -
- [14, ∞)
- (−π2, π2)
- [−√3, 14]
- [−√3, −1]
f:R→R is defined as f(x)=x4−6x2+12. The range of f(x) is
(−∞, ∞)
[12, ∞)
[−3, ∞)
[3, ∞)
- [0, ∞)
- [14, ∞)
- (−∞, 14]
- {14}
Let f, g and hbe real valued functions defined on the interval [0, 1] byf(x)=ex2+e−x2, g(x)=xex2+e−x2 and h(x)=x2ex2+e−x2. If a, b and c denote, respectively, the absolute maximum of f, g and h on [0, 1], then
a = v and c ≠ b
a ≠ b and c≠ b
a = c and a ≠ b
a = b = c
- (−∞, ∞)
- (−∞, 0)
- (0, ∞)
- ∅
Range of f(x)=tan(π[x2−x])1+sin(cos x) is (where [x] denotes the greatest integer function)
- (−∞, ∞)∼[0, tan 1]
- (−∞, ∞)∼[tan 2, 0]
- [tan 2, tan 1]
- {0}
- [−3π2, π2]
- [−5π2, π3]
- [−3π2, π]
- [0, π2]
- (1, ∞)
- (1, 117]
- (1, 73]
- [1, 75]
- [13, 3]
- [13, 1]
- [1, 3]
- (−∞, 13]∪[3, ∞)
- [0, 54]
- [1, 54]
- (−1, 54)
- [−1, 54]