Relation between Areas of Squares Drawn on Sides of a Right Triangle
Trending Questions
The area of a square field is . A man cycles along its boundary at. In how much time will he return to starting point?
Three squares are constructed on each side of the triangle as shown, with the length of each square equal to the side of the triangle on which it is constructed. The angle opposite to the blue colour square is the right angle. If the two small sides are 8 cm and 15 cm, then the area of the blue square is _____.
289 cm2
578 cm2
143 cm2
144.5 cm2
Refer to the following figure. Three squares are constructed on each side of the triangle as shown, with the length of each square equal to the side of the triangle on which it is constructed. The angle opposite to the blue colour square is the right angle. If the largest side 5 cm, then find the sum of the area of the yellow square and brown square.
4 cm2
13 cm2
9 cm2
25 cm2
Refer to the following figure. Three squares are constructed on each side of the triangle as shown, with the length of each square equal to the side of the triangle on which it is constructed. The angle opposite to the blue colour square is the right angle. If the largest side is 13, then sum of the areas of the three squares is _____.
338 sq.units
169 sq.units
13 sq.units
380 sq.units
Three squares are constructed on each side of the triangle as shown, with the length of each square equal to the side of the triangle on which it is constructed. The angle opposite to the blue colour square is the right angle. If the small two sides are 5 cm and 12 cm, then find the area of the blue square.
Refer to the following figure. Three squares are constructed on each side of the triangle as shown, with the length of each square equal to the side of the triangle on which it is constructed. The angle opposite to the blue colour square is the right angle. If the largest side is 17 cm, then find the sum of the areas of the three squares.
289 cm2
578 cm2
143 cm2
None