Application of Algebraic Identities
Trending Questions
- 180
- 204
- 214
- 200
Question 1(vi)
Multiply the binomials:
(34a2+3b2)and 4(a2−23b2)
12.12−7.92.
- 80
- 84
- 88
- 86
Find the value of 1010×990 , using identities.
999900
- 100000
- 990000
- 119900
- 0.64 m2+1.12 n2
- 0.64 m2+1.21 n2
- 0.64 m2−1.21 n2
- 0.64 m2−11.2 n2
- (a+b)×(a−b)=a2−b2
- (a+b)2=a2+2ab+b2
- (a−b)2=a2−2ab+b2
- None of the above
The value of (a+1)(a−1)(a2+1) is a4−1.
True
False
(4pq+3q)2 − (4pq−3q)2= ____________.
48p2q
44p2q
48pq2
44pq2
If x2+y2=14 and xy=3,
then find the value of
2(x+y)2−5(x−y)2.
0
106
14
52
If (x2−y2)=18 and (x−y)=3, find the value of x2+y2+2xy.
81
243
729
27
Lowest form of x4+x3y+x2y2x3−y3
x3(x−y)
x2(x+y)
x2(x−y)
x2+y(x+y2)
Find the product.
(i) a2×(2a22)×(4a26)
(iv) x×x2×x×x3×x4
Simplify:
[(5z−2)2+40z]÷(5z+2)
2z+5
2z−5
5z−2
5z+2
- p2 + q2
- p2 - q2
- q2 - p2
- (q−p)2
The product ( y + 1y ) ( y - 1y ) can be simplified as _______.
2 y
y2 + 1y2
2 y2
y2 - 1y2
Simplify (xy+yz)2−2x2y2z and find it's value when x=−1, y=1 and z=2.
3
4
-3
0
- 48pq2
- 42pq2
- 48p2q
The value of (109)2 is _______.
10881
11881
11891
11880
Evaluate : ( 5 x +4y ) (5x -4y )
25x2 +16y2
25x2 -16y2
25x2 -4y2
5x2 -16y2
- True
- False
(i) (3x+7)2−84x=(3x−7)2
(ii) (4pq+3q)2−(4pq−3q)2=48pq2
(iii) (a−b)(a+b)+(b−c)(b+c)+(c−a)(c+a)=0
Reduce to the lowest form of: 2x−1+3x+1 =
(5x−1)(x−1)
(1)(x2−1)
(6x+1)(x2−1)
(5x−1)(x2−1)
- 48pq2
- 42pq2
- 48p2q
(4pq+3q)2 − (4pq−3q)2= ____________.
44p
48q
48pq2
44q
- 4x2+8x+10
- 8x3+4x2+8x+8
- 8x3+4x2+8x+10
- None of the above
Which of the following is not true?
(a−b)2 = a2 - 2ab + b2
(x+a)(x+b)=x2+(a+b)x+ab
(a+b)2 = a2 - 2ab + b2
(a+b)2=b2 + 2ab + a2
Show that :
(i) (3x+7)2−84x=(3x−7)2
(ii) (4pq+3q)2−(4pq−3q)2=48pq2
(iii) (a−b)(a+b)+(b−c)(b+c)+(c−a)(c+a)=0 [3 MARKS]