Multiplication of Polynomials
Trending Questions
Question 82 (ii)
Subtract
6x2−4xy+5y2 from 8y2+6xy−3x2
(x+y)(x−y)(x2+y2) is equal to
( + )
x4 - y4
( - )
x3 + y3
- x4−11x3+10x2−2x−2
- x4+11x3+10x2+2x−2
- x4+11x3+10x2−2x−2
- x4+11x3−10x2−2x−2
- 2(3x−10)(3x+2)
- 2(3x+10)(3x−2)
- 2(6x−4)
- 12
- 42
- 24
- 21
- 2x2+6x+4
- 2x2+3x+2
- x2+6x+2
- x2+8x+24
(a+b+c)(a+b−c) =
a2+4ab+b2-c2
a2+2ab+b2
a2+2ab-c2
a2+2ab+b2-c2
Question 81 (iv)
Add :
5x2−3xy+4y2−9, 7y2+5xy−2x2+13
Subtract the following:
- x4+11x3−10x2−2x−2
- x4−11x3+10x2−2x−2
- x4+11x3+10x2−2x−2
- x4+11x3+10x2+2x−2
Simplify: (3x−2y)(3x+4y)−(3x+2y)(3x−2y)
0
−4y2+6xy
2y(−2y+3x)
Both B and C
The value of (3x2+5y2)(4xy−5y), if x=2 and y=3 is 513.
False
True
Unlike terms can be _______.
added
multiplied
subtracted
both added and subtracted
3A−2B−C
If , then
is purely real
is purely imaginary
is purely imaginary
(i) (43x2+3)(43x2+3)
(x+a)(x+b)
- x2+(a+b)x+ab
- x2−(a+b)x+ab
- x2+(a+b)x−ab
- x2−(a+b)x−ab
If the length and breadth of a rectangle are (x2−x+2) cm and (x2+x−2) cm respectively, find the area of the rectangle.
x4−5x3−x2
x4−x3−4x2+4
x4−x3−x2−4x
x4−x2+4x−4
The value of (3x2+5y2)(4xy−5y), if x=2 and y=3 is 513.
False
True
Expand: (7x+8y)3
(a−b)2
- a2−2ab+b2
- a2−2ab−b2
- a2+2ab+b2
- a2+2ab−b2
(x−2y+3)2+(x+2y−3)2
Multiply (7x−4x2+2x3−5) with (3x−2).
6x4−16x3+29x2−x+1
6x4−16x3+29x2−29x+10
6x4−16x3+27x2−x+10
5x4−16x3+29x2−x+10
If base and the altitude of a triangle are (3m+2n) and (3m−4n) repectively, then the area of the triangle is _____.
12×(9m2+6mn−8n2)
12×(9m2−6mn+8n2)
12×(9m2−6mn−8n2)
12×(9m2+6mn+8n2)
Find the product of (t+s2) and (t2−s).
t3+s2t2−st−s3
t3+s2t2−st−s2
t3+s2t2−2st−s3
t3+t2−st−s3
The product of (x+7y) and (7x−y) is
7x2−48xy−7y2
7x2−48xy+7y2
7x2+48xy+7y2
7x2+48xy−7y2
(a+b+c)(a−b−c) = ______
a2+b2−c2−ca
a2−b2+c2−2ca
a2+b2+c2−bc
a2−b2−c2−2bc
Unlike terms can be _______.
multiplied
both added and subtracted
subtracted
added
(a+b+c)(a−b−c) = ______
a2+b2−c2−ca
a2−b2+c2−2ca
a2+b2+c2−bc
a2−b2−c2−2bc
(a2−b2)
- (a+b)(a−b)
- (a+b)(a+b)
- (−a+b)(a−b)
- (a+b)(−a−b)