Multiplying Terms with Same Base
Trending Questions
Q. If a is a non-zero integer and m is any integer, then a−m×am = .
- 1
- 0
- a2m
Q. If 5m×53×5−25−5=512, then find m.
Q.
Obtain the product of
Q. If 5m×53×5−25−5=512, then find m.
Q.
Observe the pattern carefully and fill in the blanks.
Q. The exponent of the product a^m x a^ n is ___.
- m-n
- m+n
- mn
- m/n
Q. If 5m×53×5−25−5=512, then find m.
Q. What should be the value of x, such that it satisfies the equation 4x=√16256 ?
- 3
- -3
- 4
- 2
Q. If 4x−4x−1=48, then (2x)x equals
- 216
- 156
- 64
- 125
Q. ___
The value of m which satisfies (2)m+1×25=4−2 is:
Q.
Question 68
State whether the following statement is true or false:
If x and y are integers such that x2>y2, then x3>y3
Q. The value of x from the equation
√x2+2x−3+√x2−x=√5(x−1) will be ____________.
√x2+2x−3+√x2−x=√5(x−1) will be ____________.
- {1, 15}
- {15, 13}
- {1, −15}
- {12, 15}
Q.
An algebraic fraction is being given as 4×((2 − (m + n)(m − n))(m − 3n)(m − n)). What is the decimal value of this expression?
2
3
4
1
Q. lf (7+4√3)x2−8+(7−4√3)x2−8=14, then x is
- 3, √7
- ±3, ±1
- ±3;±√7
- ±3, ±4
Q. Evaluate
(53)−2×(53)−14
(53)−2×(53)−14
- (53)−16
- (53)16
- (−53)16
- (−53)−16
Q.
Find the value of the following:
Q.
When multiplying terms with the same base, the exponents are ____.
divided
- subtracted
added
multiplied
Q. If 2x−2x−1=4, then xx is equal to
- 7
- 27
- 3
- None of the above
Q.
Write in the product form.
Q. Find the value of 1022+10201020.
- 10
- 1042
- 102
- 101
Q.
Find the value of m if (−10)m+1×(−10)5=(−10)7.
1
2
3
-1
Q. If 2m×24×2−62−5=210, then m = ___.
- -3
- 7
- 10
- 17
Q. Simplify: x2×y2×x5×y3
- x7y5
- x7y7
- x5y5
- x5y7
Q.
The value of (5)^(4) x (5)^(5) is
1/5
(5)^(4)
(5)^(6)
(5)^(9)
Q. 2−5×2−10 =
- 2−15
- 215
- 2−5
- 25
Q.
Write in the product form.
Q. If 5m×53×5−25−5=512, then find m.
Q.
Write in single exponent form:
Q.
Multiply : by
Q. The sum of the first n−terms of the series 12+2.22+32+2.42+52+2.62+......... is, when n is even. When n is odd, the sum is
- n(n+1)24
- n2(n+2)4
- n2(n+1)4
- n(n+2)24