Special Pattern 01
Trending Questions
Q. Find the missing number using the given pattern.
22+32+62=7232+42+122=13242+52+( )2=( )2
22+32+62=7232+42+122=13242+52+( )2=( )2
- 15, 16
- 20, 21
- 25, 24
- 24, 23
Q. Without adding, find the sum of the following numbers
(i) 1 + 3 + 5 + 7 + 9 =
(ii) 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 =
(iii) 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 + 21 + 23 + 25 =
[3 marks]
(i) 1 + 3 + 5 + 7 + 9 =
(ii) 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 =
(iii) 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 + 21 + 23 + 25 =
[3 marks]
Q. Fill in the blanks.
52+62+( )2=(31)2
52+62+( )2=(31)2
- 30
- 31
- 29
- 20
Q. If 112=121, 1012=10201find the square of 1001.
- 100001
- 1002001
- 10021
- 1002
Q. Fill in the blanks.
62+72+422=( )2
62+72+422=( )2
- 43
- 45
- 40
- 41
Q. (1965)2 = ?
3961254
3861286
3562341
3861225
Q. Match the following with their equivalents.
- 1+3+5+7+9+11+13
- 12+13
- 5×7
- 6+10
Q. Find the missing number using the given pattern.
22+32+62=7232+42+122=13242+52+202=212
What is the general form for the above pattern?
22+32+62=7232+42+122=13242+52+202=212
What is the general form for the above pattern?
- (m)2+(m+1)2+((m)×(m+1))2=((m)×(m+1)+1)2
- (m)2+(m+1)2+((m)×(m+1))2=((m)×(m+1))2
- (m)2+(m+1)2+((m)×(m))2=((m)×(m+1)+1)2
- (m)2+(m)2+((m)×(m+1))2=((m)×(m+1)+1)2
Q. Tap on the triangular numbers among the following.
- 1
- 2
- 3
- 6
- 9
- 10
- 16
- 28
Q.
Find the value of (66666)2.
222237776
4444355556
4444655556
445544554455